
www.cyberark.com1

4 STEPS TO SECURING YOUR SOFTWARE SUPPLY CHAIN
ADDRESSING SECURITY VULNERABILITIES IN DEVELOPMENT ENVIRONMENTS

EBOOK

http://www.cyberark.com

THE VULNERABLE SOFTWARE
SUPPLY CHAIN
Advanced, software supply chain attacks have a vast and rippling impact. By
injecting malicious code into an otherwise legitimate software update, bad
actors infected over 18,000 conscientious SolarWinds customers.

The malware inserted in SolarWinds’ Orion application is just one vector of what looks
to have been a well-planned, multi-pronged campaign targeting specific organizations.

Such a high impact breach exposes the increasing attack surface and vulnerability of
software development and delivery. With the advent of CI/CD pipelines, supply chain
attacks have become more prevalent – with attackers compromising certificates to
sign code and bypass controls.

 • As early as 2016, the BitTorrent client Transmission’s source code was backdoored
on GitHub. And in 2017 the popular cleanup application Ccleaner was backdoored
via a compromised code signing certificate

 • A Docker Hub breach allowed the theft of 190,000 usernames and hashed
passwords and exposed Bitbucket and Github access tokens

 • A Kubernetes security flaw allowed attackers to use an infected container to
replace files on users’ workstations.

Contents

The Vulnerable Software Supply Chain 2

Increased Risk in the DevOps Landscape5

Step 1: Secure Developer Workstations 7

Step 2: Protect Application Credentials9

Step 3: Safeguard DevOps Tool
Administration Consoles ...11

Step 4: Weave the Three Strategies
to Work Together ..13

Securing the Development Environment
is a Team Sport ... 15

Next Steps – How CyberArk Can Help 17

www.cyberark.com2

https://www.theinquirer.net/inquirer/news/3074793/
https://www.sdxcentral.com/articles/news/latest-kubernetes-security-flaw-linked-to-incomplete-patch-of-past-flaw/2019/06/
http://www.cyberark.com

Layered Identity Security Controls
Enterprise software development and delivery has become highly automated with
minimal human intervention during the build process. Many development tools
and platforms themselves are Tier 0 assets, with credentials and access to other
assets across the enterprise and from third parties.

The development environment has become more interconnected, frequently with
cloud-based components outside the direct control of the developers, operations,
or security.

Still, the majority of all cyberattacks involve – and ultimately rely upon – the
compromise of identity and the manipulation of privileged access. The SolarWinds
breach is no exception.

This eBook explains how best practices for layered identity security controls
in the development and delivery environment go a long way in limiting both,
vulnerabilities in the software supply chain – and attackers from accessing,
stealing, and controlling enterprise assets.

www.cyberark.com3

http://www.cyberark.com

SimDisk

2013 2015 2017 2018 2019 2020

Altair
EvLog

GOM Media
Player

Mint
Linux

Classic Shell
& Audacity

Transmission

Ask.com
Partner Network

UltraEdit
“Wily Supply”

MeDoc

Net-
Sarang

PDF
escape

Gentoo
Linux

MEGA
Chrome

extension
Docker

Hub
Docker

Hub

CCleaner MediaGet ESLint RubyGems
Trojan

(August 2019)

Solarwinds
Orion

(October 2019)

HandBrake

PyPi
10 pkgs

npm
38 pkgs

Elmedia
Player phpBB

Vesta-
PC

Arch
Linux
AUR

PyPi
12 pkgs StatCounter

Pypi
backdoored

packages
(July 2019)

Octopus
Scanner

(May 2020)

npm
getcookies

npm
event-stream

Web Developer
+8 Chrome extension

2016

A Timeline of Increasing Supply Chain Attacks

www.cyberark.com4

http://www.cyberark.com

Talented developers, both internal and external, are key to
successful digital transformation initiatives. With more automated
software development and delivery processes and access to cloud-
based tools and repositories, they can deliver more code faster.

But these advances also expand the attack surface. There are more
vulnerabilities along the software supply chain, from coding with
open-source components, to automated builds and testing, to cloud-
based deployment. This is especially evident with insecure privileged
accounts, credentials, and secrets, e.g., API calls, encryption keys, access
tokens, certificates, passwords, etc.

Software supply chain attacks, like the SolarWinds campaign, can be
multi-layered – involving several interim steps or vectors. But they have
in common the ultimate goal: to compromise identities and escalate
privileged access.

A fundamental component of a defense-in-depth (DiD) approach is
securing identities throughout the development environment, including
cloud native applications. We will next cover the four most important
strategies in a DiD approach to securing CI/CD.

And as we shall see, the evolving development landscape and resultant
threats to the enterprise make it imperative that Development and
Security leadership work together.

INCREASED RISK IN THE DEVOPS LANDSCAPE

Securing development workstations and endpoints1
2
3
4

Protecting application credentials

Safeguarding DevOps tool administrative consoles

Finally, combining these best practices into a holistic
approach to securing development environments

4 Steps to Securing Your Supply Chain

www.cyberark.com5

http://www.cyberark.com

Developer /DevOps Admin
Workstation

Code /Repository

· Code injection

· Code theft

· Exposed Git
 credentials

Build Tools

· Exposed credentials

· Malware injected
 with automated
 commit

· Injected code, artifacts,
 malware, rogue scripts

· Exposed credentials, e.g.,
 hard coded access keys

Automation Scripts

· Artifact injection

· Malware injection

· Exposed credentials

Container Platform

· Hijacked IT resources

· Exposed customer data

· Stolen IP

Cloud Console

· Exposed Git credentials

· Exposed access keys
· Malicious activity

Dev Workstation

Build Products Test /Provision AccessRun /Operate

Open Source Git CI/CD Tools Artifact Repo Automation Code Containers Native CloudHybrid Databases

Vulnerabilities in the Software Supply Chain

www.cyberark.com6

http://www.cyberark.com

Step 1:

SECURE DEVELOPER WORKSTATIONS
Developers need access to be productive and not be burdened by
security. The #1 goal is to make security transparent; to allow access to
assets and services they require, yet smartly restrict access to what they
do not. Developer workstations can be tiered according to usage and
corresponding security requirements.

Whether accessed locally from a desktop or remotely via laptop, some DevOps
processes and systems require a high level of privilege, if only for some specific
actions and for limited time periods.

One of the biggest dangers is these credentials are often saved locally, making
developers’ workstations high-value targets for attacks from something as
simple as a phishing email.

www.cyberark.com7

http://www.cyberark.com

Secure Developer Workstations – Tiering Example The most effective strategy for protecting privileges on
developer workstations follows these best practices:

1. Remove local admin rights and apply the principles
of Zero Trust and Least Privilege to ensure privileges
are elevated only when needed.

2. Use MFA (Multi-Factor Authentication) when
possible.

3. Use install privileges to block installation of
unknown apps and allow approved tools. Remove
unapproved software and flag violators.

4. Secure local credential stores, i.e., protect default
locations where cloud access keys, such as AWS
Access Keys and Git credentials, are stored on
endpoints.

5. Block known malware and prevent potential
compromise by running unknown apps in restricted
mode.

6. Review restrictions on a regular basis with the goal
of minimizing privilege while avoiding overly onerous
restrictions which inhibit developer productivity.

TIER 1:
Top tier for
power users

TIER 2:
Middle tier-
most users

TIER 3:
Lowest tier

· On demand privilege elevation
· Self-service with management approval
· Only permit installs that meet policy
· Flag violators

Highest requirements 10% of
Workstations

· Edit environmental variables
· Edit host �les
· Use Visual Studio

Some special requirements

Basic user with few
special requirements

50% of
Workstations

40% of
Workstations

www.cyberark.com8

http://www.cyberark.com

Step 2:

PROTECT APPLICATION CREDENTIALS
Virtually all applications use credentials to access other assets and
resources throughout the enterprise. The SolarWinds episode has made
abundantly clear why the enterprise needs to secure all their applications
everywhere, across the entire organization.

Weakly or inconsistently stored credentials in applications, scripts, and other
sources is a major vulnerability. Frequently these credentials cannot be easily
rotated, monitored, or tracked. They can also be exposed inadvertently if the
code is posted to a public site such as GitHub.

Establish the following best practices for securing the credentials used by
applications, scripts, and other non-human identities to securely access
databases and other sensitive resources:

1. Eliminate all hard-coded credentials used to access databases, tools, and
other sensitive resources. Replace with a secure approach, such as an API
call to fetch the secret from a digital vault.

www.cyberark.com9

http://www.cyberark.com

5 7 8 9 10 11 123 4 621 17 19 20 2115 16 181413

2. Centrally rotate, manage, store, and monitor
secrets and other credentials used by
applications, scripts, and other non-human
identities. Ensure audit and compliance needs
can be met.

3. Strongly authenticate applications, containers,
and other non-human identities requesting
access to secrets and credentials. Whenever
possible use the native attributes of the
requestor for authentication to eliminate the
secret zero issue.

4. Apply principles of least privilege and
role-based access controls (RBAC) so the
application, container, script, or automation
process only has access to the credentials it
needs.

These best practices are far easier to implement,
and manage going forward, with a centralized,
secrets management platform.

Example of Securing Application Credentials

Centralized Vault and
Credential Management

Secrets
Management

Platform

AWS Lambda
functions

Applications

Optional – Improves Security Posture
but Not Required (Also secures

credentials used by human users)

www.cyberark.com10

http://www.cyberark.com

Step 3:

SAFEGUARD DEVOPS TOOL
ADMINISTRATION CONSOLES
Widely used DevOps tools and platforms such as Jenkins and Azure DevOps;
provisioning tools like Ansible and Puppet; and container-orchestration environments
like Red Hat OpenShift, Kubernetes, and VMware Tanzu provide extraordinary control
over an organization’s development resources. They also can provide far-reaching
access to enterprise resources beyond development.

As the usage of these administrative consoles surges, they have become attractive targets for
attackers, who can exploit unsecured consoles to target other resources in the development
environment and beyond. Far too many organizations use the default configurations of these
tools, which in some cases do not require passwords for privileged access. Attackers are using
bot crawlers to systematically search out and exploit these exposed vulnerabilities.

While vendors and open-source communities have worked to address these vulnerabilities,
security weaknesses remain.

www.cyberark.com11

http://www.cyberark.com

Secure DevOps tool administrative consoles with these
best practices:

1. Apply basic password best practices (manage, rotate,
etc.), and use MFA for critical operations. Ideally use
MFA for all console access. Avoid the use of default
configs and passwords. Example: some tools establish
a developer default user to create projects, other
tool consoles can be accessed using http or with the
default password.

2. Centrally control and manage human and other
interactive access to management consoles and
Command Line Interfaces (CLI). Example: securing
access to the Jenkins UI (User Interface).

3. Transparently manage and monitor sessions and make
it easy for developers to adopt secure solutions. Limit
the attack surface by providing access to the CLI only
via jump servers and other monitoring tools.

4. Use adaptive, context-based MFA to maintain
productivity yet mitigate risk. Step up authentication
forces human review or approval before sensitive
scripts are run automatically, such as pushing commits
to Git.

Secure Developer Workstations – Tiering Example

PAM / Secrets Management

PaaS DevOps Tools

Consistently Enforce Privilege Security Policies For Human Users,
and Applications, Scripts and Other Non-Human identities

IaaSHybrid
Infrastructure

www.cyberark.com12

http://www.cyberark.com

Step 4:

WEAVE THE THREE STRATEGIES
TO WORK TOGETHER
A holistic approach combines these best practices to secure the
full development environment, and build a layered, DiD for the
enterprise. This calls for Development and Security leadership to
work together to establish policies – and enforce adoption.

The SolarWinds episode is an opportunity to address vulnerabilities in the
development environment that expose the entire organization. Developers
and security teams are motivated to ensure no malicious code or artifacts
can be injected into their code, as well as protect their intellectual property.

www.cyberark.com13

http://www.cyberark.com

The development environment of each organization is
different, but typical successful strategies that employ
the best practices described above include:

1. Segment the code by development team and use
MFA to force intervention and review of sensitive
automated actions, e.g., commits to master.

2. Development and security team together establish
a hierarchy of end user requirements. For example
who needs on-demand privilege escalation or
self-service with management approval.

3. Establish best practices for the securing of
credentials used by applications, scripts, and other
non-human identities. This includes eliminating
hard-coded credentials; centrally store, rotate and
manage; and to strongly authenticate applications,
containers, and other non-human identities
requesting access to secrets and credentials.

4. The security team regularly and proactively adjusts
endpoint protections to accommodate developer
needs. It is a matter of balancing protection and
productivity.

Secure the Full Development Environment

Apply
Policies

Control Point · Enforce consistent policies
· Segment access to code base
· Trigger manual review after pull request
· Discard build environments after single use

Enforce polices based on best practices

· Apply least privilege and privilege escalation
· Block storage of Git and Jenkins credentials
· Enable teams to select preferred IDE and dev tools

Secure developer workstations

· Secure tools and scripts
· Provide positive dev experience
· Monitor pull requests

Control access to
dev tool consoles

· Secure secrets in code and automation scripts
· Rotate, manage and audit

Manage application
secrets and credentials

3:

Secure
Credentials &

Access

Control Point 2:

Secure
Endpoints

Control Point 1:

www.cyberark.com14

http://www.cyberark.com

SECURING THE DEVELOPMENT
ENVIRONMENT IS A TEAM SPORT
Let’s be honest: any security strategy that slows down the delivery
of code encourages developers to get creative with workarounds. It
is also true that any security strategy for development cannot be so
burdensome that it swamps security teams with difficult to manage
processes for workstations, applications, and increasing DevOps
tools (many including automation).

Development environments are complex and securing them requires a
specific, focused perspective. Developers may not fully recognize all the
potential vulnerabilities that could impact the organization. By the same
token, IT and security teams may be less familiar with development tools
and processes.

It is critical that security teams and development work together. And it is
essential that Development and Security leadership make it a priority to
enable this cooperation.

Approaches to Engaging Developers
Security team members know that they need to
work more proactively with their Dev and DevOps
counterparts but often don’t know where to start.
Research on approaches for securing DevOps
environments from CISOs and security leaders at
the Global 2000 identified five key approaches to
successfully engage with and help developers adopt
secure practices:

1. Transform the security team into a DevOps partner.

2. Prioritize securing DevOps tools and infrastructure.

3. Establish enterprise requirements for securing
credentials and secrets in DevOps and cloud
environments.

4. Adapt secure processes for application testing.

5. Evaluate the results of the DevOps security program.

LEARN MORE

www.cyberark.com15

https://www.cyberark.com/resources/white-papers/the-ciso-view-protecting-privileged-access-in-devops-and-cloud-environments
http://www.cyberark.com

Security teams can more effectively work with
developers to secure applications by proactively
reaching out earlier in the development
process, commonly referred to as “shifting left.”
Conversely, developers can make it a practice
to call in security at the planning stage—rather
than waiting to get them involved just before the
code goes live. Shifting security left to more fully
include the software supply chain is critical to
protecting the enterprise.

Protecting privileged access embodied
in credentials and secrets, on developer
workstations, within applications, and on
admin consoles, is key to securing the software
supply chain. Securing identity throughout
the development environment, increasingly
automated and a doorway to other assets, is
fundamental to an enterprise DiD strategy.

Shifting Security Left

P L A N C O D E CREATE TEST RELEASE DEPLOY OPERATE

SECURITY SHIFTS LEFT

D e v e l o p e r s

D e v O p s

S e c u r i t y

www.cyberark.com16

http://www.cyberark.com

NEXT STEP – HOW CYBERARK CAN HELP

CyberArk Blueprint
CyberArk offers a prescriptive framework to
help guide organizations with a risk-based
approach to building their privileged access
management programs.

Blueprint not only address enterprise-wide
on premises systems but also infrastructure-
as-a-service admins, CI/CD consoles, and
dynamic applications. This ensures privilege
is secure wherever it exists across the
application development and deployment
process.

THIS PUBLICATION IS FOR INFORMATIONAL PURPOSES ONLY AND IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NON-INFRINGEMENT OR OTHERWISE. IN NO EVENT SHALL CYBERARK BE LIABLE FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR CYBERARK SHALL NOT BE LIABLE FOR DIRECT, SPECIAL, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
OR DAMAGES FOR LOST PROFITS, LOSS OF REVENUE OR LOSS OF USE, COST OF REPLACEMENT GOODS, LOSS OR DAMAGE TO DATA ARISING FROM USE OF OR IN RELIANCE ON THIS PUBLICATION, EVEN IF CYBERARK HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. 03.21. Doc. 212312

CyberArk solutions enable you to take a proactive, holistic approach to securing privilege
throughout your development environment.

No other vendor has the broad experience or offers a comparable breadth of privileged access
management solutions for securing both human users and non-human identities across the
entire organization – including DevOps, hybrid, and native cloud environments.

 • CyberArk Secrets Manager solutions integrate with popular tools and container platforms
to provide a comprehensive solution for securing secrets and other credentials in DevOps
environments.

 • CyberArk Endpoint Privilege Manager enforces least privilege on the endpoint (Window and
Mac) early in their lifecycle. It enables revocation of local administrator rights and implements
application controls while minimizing impact on user productivity.

 • CyberArk Privileged Access Manager enables organizations to secure the privileged credentials
and secrets used across their entire enterprise, including the development environments that
are driving the organizations digital transformation.

 • CyberArk Adaptive Multi-Factor Authentication facilitates implementation of a broad range of
secondary authentication methods across your entire organization.

LEARN MORE

www.cyberark.com17

https://www.cyberark.com/products/privileged-account-security-solution/application-access-manager/
https://www.cyberark.com/products/privileged-account-security-solution/endpoint-privilege-manager/
https://www.cyberark.com/products/privileged-account-security-solution/core-privileged-account-security/
https://www.cyberark.com/products/adaptive-multi-factor-authentication/
https://www.cyberark.com/resources/white-papers/cyberark-blueprint-for-identity-security-success-whitepaper
http://www.cyberark.com

