Stephen Worn CTO, Data Center Dynamics

Underwritten by

Hewlett Packard Enterprise

ACCELERATING DATA CENTER TRANSFORMATION

October 27, 2016 NEWSEUM, WASHINGTON D.C.

Underwritten by

Hewlett Packard Enterprise

DATA CENTER TRANSFORMATION in the Cloud Era

- It's ALL about the App
- The Cloud Paradigm
- Next Generation Data Centers
 - Hyperscale
 - Enterprise
 - Multi-Tenant Data Centers (MTDC)
 - Modular ITC
- System Interconnects and HyperConvergence
- CAPEX and OPEX Opportunities
- Closing and Questions

Hewlett Packard Enterprise

Underwritten by

Hewlett Packard Enterprise

Holistic Approach

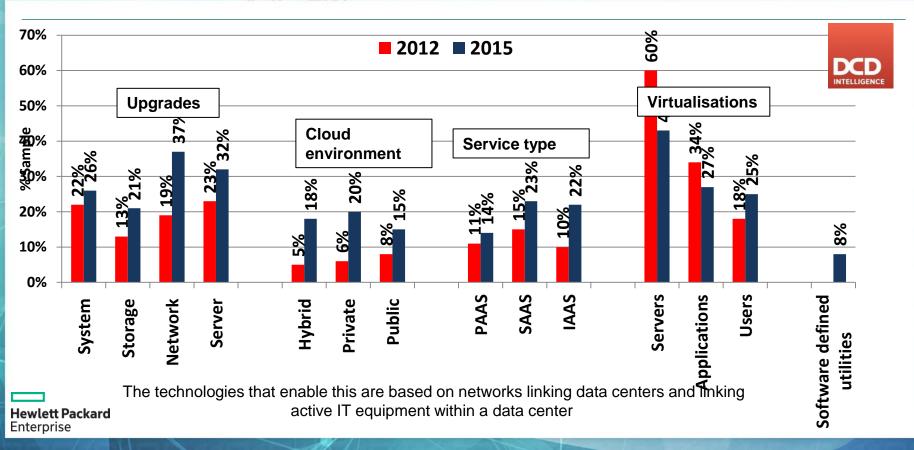
ENVIRONMENT

NETWORKING INFRASTRUCTURE

A DATA CENTER'S MISSION SHOULD BE TO CREATE RELIABILITY, MITIGATE RISK, AND PROVIDE UPTIME FOR THE TECHNOLOGY AND APPLICATIONS THAT IT ENABLES APPLICATIONS

CAPEX/OPEX

Produced by


Merilak Improving the Ou of Government IT

Powered by Intel®

Underwritten by

Enterprise

mproving the Out

Underwritten by

Hewlett Packard Enterprise Powered by Intel®

These demands mean the need to invest to improve networking performance has increased from 2013 to 2016

	2013	2014	2015	2016	
Increased IT capacity requirements	35.4%	39.6%	42.2%	48.6%	
To reduce operating costs	39.8%	38.6%	39.5%	45.3%	
To enable virtualization / cloud computing, service development	25.6%	29.6%	32.5%	42.3%	
To be 'greener' & more sustainable	29.8%	30.5%	32.5%	36.2%	
To improve network performance	21.3%	26.5%	31.2%	35.4%	
To improve space use	23.3%	25.4%	28.4%	35.1%	
To improve security	24.5%	28.6%	32.5%	35.1%	
To increase power into facility	32.5%	30.8%	31.1%	35.1%	
To increase redundancy	29.6%	28.6%	31.5%	33.4%	
An average 1 in 3 nomination - once every 3 years - frequency of IT refresh					

DCD

An average 1 in 3 nomination = once every 3 years = frequency of IT refresh

Improving the Outcor of Government IT Underwritten by

Hewlett Packard Enterprise

What are the business drivers underpinning all of this?

Meri

Underwritten by

Hewlett Packard Enterprise

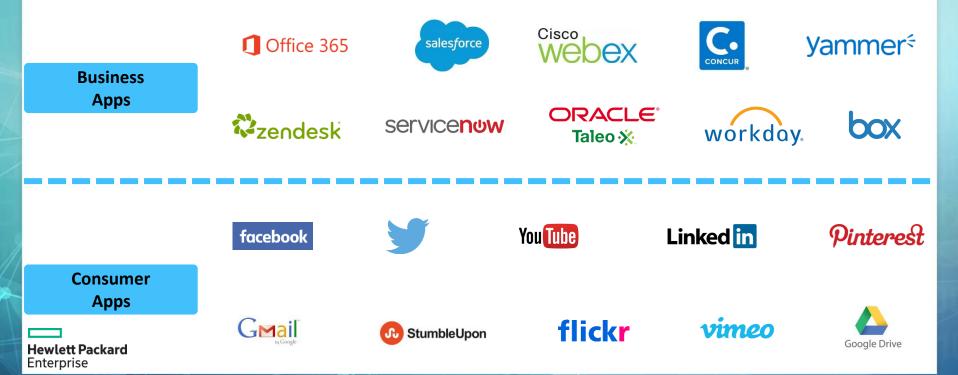
Powered by Intel

Challenges Force Change

Increasing power densities

(typically 4-6KW, now 12 up to 30, with possibilities of 70kW per rack)

- Improved cooling strategies
- Need for scalability
- Need for modularity
- Data center consolidation
- Server virtualization and demand from DevOps
- Energy saving initiatives and regulations



Improving the Outcon of Government IT Underwritten by

Hewlett Packard Enterprise Powered by Intel®

Underwritten by

Hewlett Packard Enterprise

Business and Life in Cloud

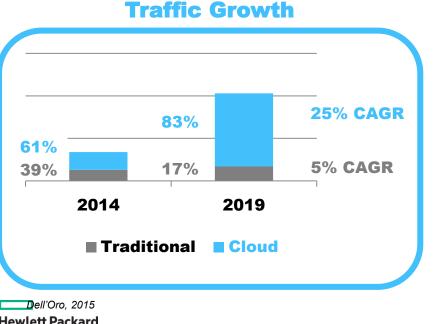
Hewlett Packard Enterprise Cisco Visual Networking Index Forecast
 Top 500 list Top 10 change

2. Garner Worldwide IT Spending 4. Gizmodo/Facebook

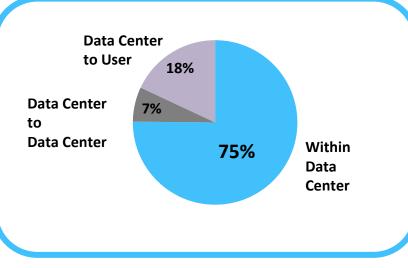
Underwritten by
Hewlett Packard

Enterprise

Next Generation Cloud Ecosystem


Improving the Outco

Underwritten by


Hewlett Packard Enterprise

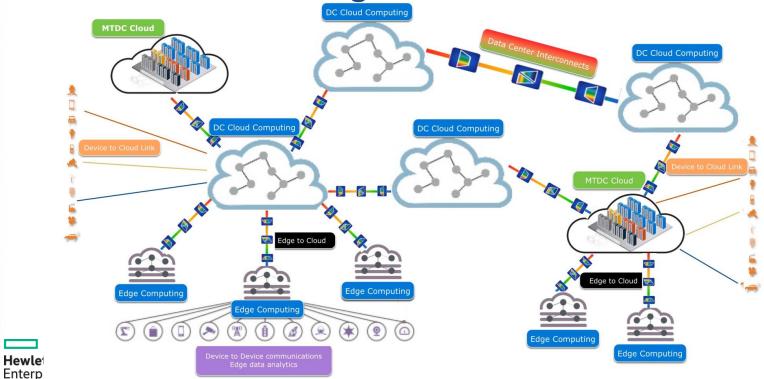
Powered by Intel® (intel)

Traffic Moving to the Cloud

Traffic Destination

Hewlett Packard Enterprise

Dell'Oro, 2015


Improving the Outcom of Government IT

Meri Talk

Underwritten by

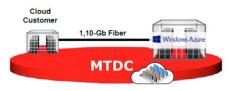
Hewlett Packard Enterprise Powered by Intel®

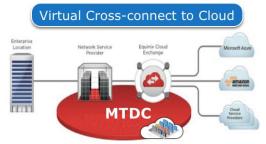
The New Cloud Paradigm

Belden 2016

MeriTalk

Underwritten by Po


Hewlett Packard Enterprise


(intel)

Hybrid Cloud Solutions

Cross-connect to Cloud

Benefits:

One to many connections Secure and private Consistent throughput Low latency Flexible, dynamic, scalable Reduced provision time Multi-Cloud support Pay-as-you-go

Challenges: New HW/SW implementation

Powered by Intel®

Benefits:

Anywhere access Flexible and dynamic Multi-cloud support

Challenges:

Hewlet

Enterpri

Low throughput High latency Security and reliability

Benefits:

Secure and private High availability BW Consistent performance Cost effective

Challenges:

Physical installation One to one connections Scalability issue

Belden and Anixter 2016

Hewlett Packard Enterprise

October 27, 2016 NEWSEUM, WASHINGTON D.C.

Hewlett Packard

Underwritten by

Enterprise

Hyperscale Data Centers

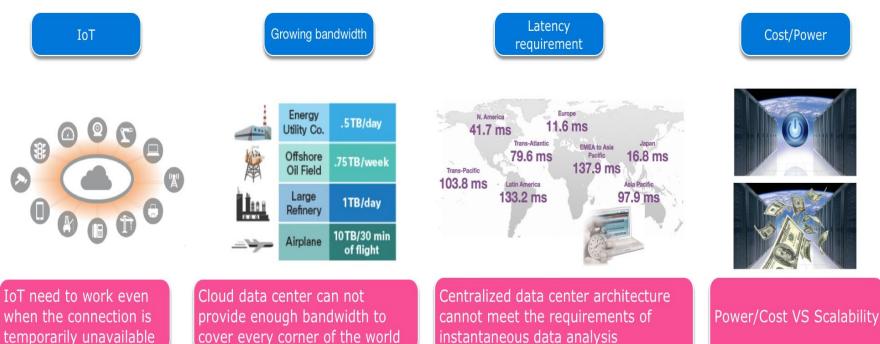
Market Size is estimated to grow from \$71.2 billion by 2022, with a CAGR of 20.7% from 2016 to 2022

Techresearchandanalysis, 2016

Source: Google

Source: Microsoft (Dublin, Ireland)

Source: Apple



Underwritten by Hewlett Packard Enterprise

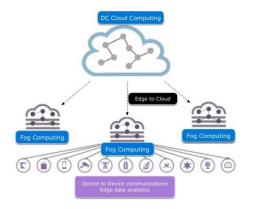
New Cloud Challenges – Move to Edge Computing

Belden and Anixter 2016

Underwritten by

Hewlett Packard Enterprise

Is Scale the Answer to Everything?


- Diminishing ROI for further scale increases...
 - Cost, latency and power consumption
- Resilience requirements
 - ITC DCs closer to the end users, and duplication
- Evolving workloads

Hewlett Packard

Enterprise

- More flexible orchestration and edge computing

D

October 27, 2016 NEWSEUM, WASHINGTON D.C. Produced by **Meri** Talk

Improving the Outo of Government IT

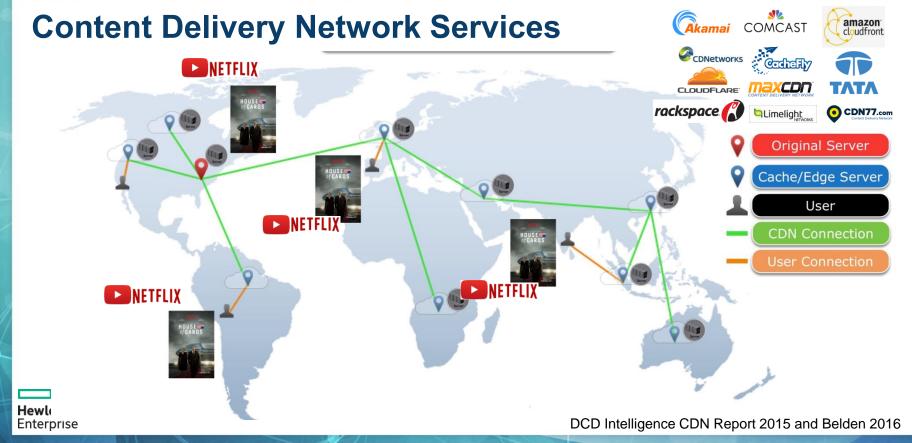
Underwritten by

Hewlett Packard Enterprise

Powered by Intel® (inte

Understanding 'As A Service' Data Centers

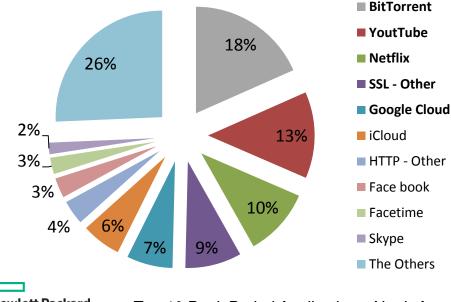
Enterprise Owned	Multi-Tenant	Hyperscale	
Internally Managed	lnfrastructure as a Service		
	SaaS as a Service	SaaS as a Service	
	FaaS DCaaS	Platform as a Service	
Hewlett Packard Asse	s	Assets	-

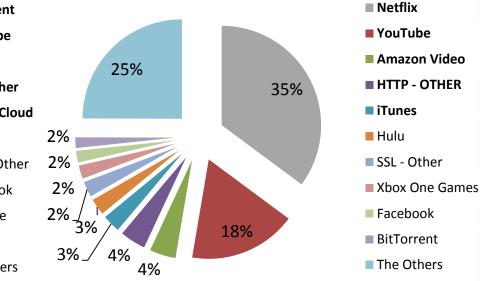


Underwritten by

Hewlett Packard (intel

Powered by Intel®


Underwritten by
Hewlett Packard


Enterprise

Over-The-Top Data Traffic

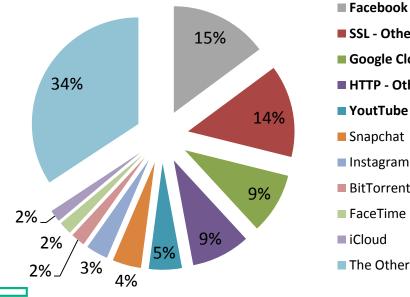
Global Internet traffic Upstream

Global Internet traffic Downstream

Hewlett Packard Enterprise

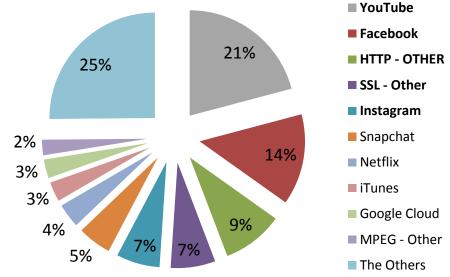
Top 10 Peak Period Applications, North America, Fixed Access

Source: Sandvine 2016


Underwritten by

Hewlett Packard Enterprise

Powered by Intel® inte


Over-The-Top Data Traffic

Global Internet traffic Upstream

Global Internet traffic Downstream

Hewlett Packard Enterprise

Top 10 Peak Period Applications, North America, Mobile Access Source: Sandvine 2016

Hewlett

October 27, 2016 NEWSEUM, WASHINGTON D.C.

Improving the Outcom of Government IT

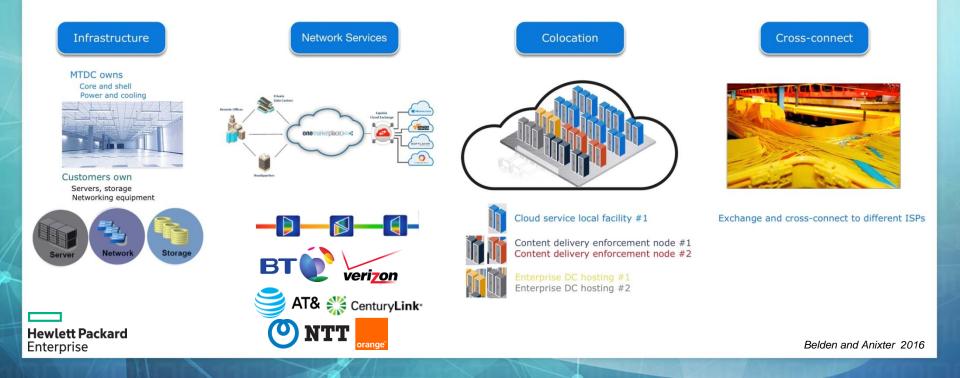
Underwritten by

Hewlett Packard Enterprise

Powered by Intel®

Latency Impacts

Source: EdgeConnex @ OFC 2016



Improving the Outco

Underwritten by

Hewlett Packard Enterprise Powered by Intel®

Multi-Tenant Data Center Service Types

Enterprise

October 27, 2016 NEWSEUM, WASHINGTON D.C.

Underwritten by Hewlett Packard

Enterprise

New Data Centers Ecosystem at the Edge

- Colocation/Edge data centers •
 - Caching content closer to the end user
 - Smaller and more distributed locations
 - Enterprise end users prefer certain mission critical elements of their IT infrastructure to be physically closer to their offices
- Edge-Computing nodes allow extending the Cloud and support low latency applications Hewlett Packard

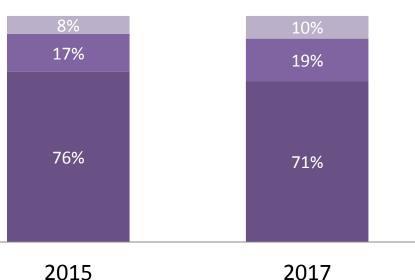
- The emergence of secondary data center markets MTDCs, CDNs
- Provide direct connects
 - Being part of the Cloud value chain
 - Direct connectivity to Enterprise
 - Consumption-based pricing models
 - No more long term commitments month to month pricing

Underwritten by Powered by Intel

Hewlett Packard Enterprise

(intel)

Enterprise Data Center – Still a Significant Market


- Enterprise
 - Financial institutes
 - Health care
 - Storage, IT infrastructure
 - Small-medium enterprise
- Government, research/education
 - High performance computing
 - Big data analytics
- Internet of things

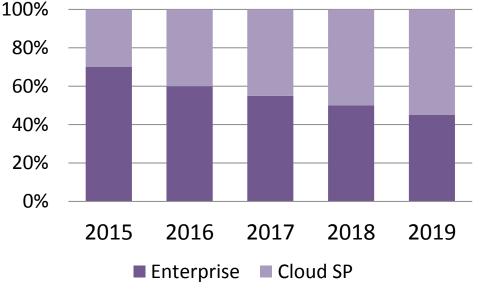
Source: 451 research

Enterprise

Global data center space in square feet

Enterprise MTDC Cloud

Underwritten by


Hewlett Packard Enterprise

Server Shipment Forecast

- Current installed base
 - Enterprise >> Cloud
- Migration trend
 - From Enterprise to
 Cloud service provider
 - From Enterprise to MTDCs for Hybrid Cloud service

Server shipment split

Underwritten by

Hewlett Packard

Powered by Intel

Traditional DC VS Modular DC

Traditional Datacenter

- Complex engineeringlong term construction, average 2 years
- Low infrastructure utilization, stranded capacity and PUE>2.0
- One-time construction, large Initial investment, Highly managed ROI
- Unused capacity high Opex and Stranded IT
- Fixed infrastructure structure, scalable, can be slow to business reacting
 - Subsystem cross-management weaknesses across multiple systems. high cost of O&M

Hewlett Packard Enterprise

Schneider Electric and Rittal 2016

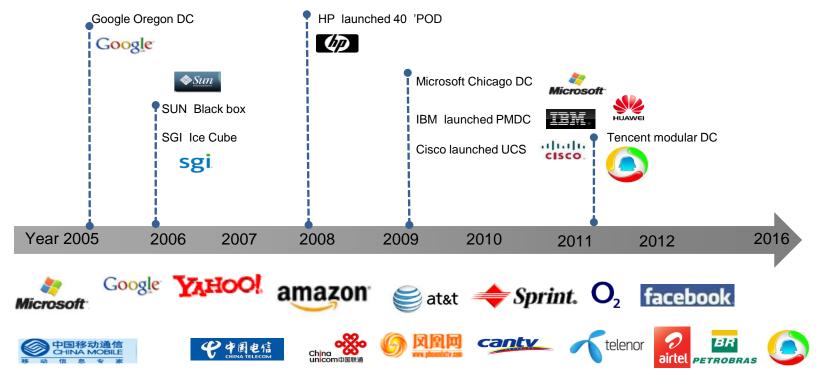
Modular Datacenter

- Standardized Design and Engineering
- Shortened Construction Period 1 to 3 months
- High infrastructure utilization
- Balanced PUE<1.6 Based on IT Capacity
- Energy Efficienct: Improved power consumption and modular subsystems.
- Concentrated power & cooling improve infrastructure utilization
- Flexible structure, phased deployment
- Financial benefits, lower CAPEX and OPEX across all environments and subsystems
- Capacity and Location On Demand
- Decentralized Control with Centralized Mgt.
- DCIM and Predictive Analysis

He

Er

October 27, 2016 NEWSEUM, WASHINGTON D.C.



Underwritten by

Hewlett Packard Enterprise

Powered by Intel®

Modular data center has been widely accepted

Underwritten by

Hewlett Packard

Powered by Intel

Modular Spaces

FLERATIN

TA CENTER

TRANSFORMATION

- Modular design is slightly different thinking
 - It can be as simple as a cabinet that contains individual modules or bays
 - Or as dynamic as an entire data center space
- Modularity could mean the ability to expand in a planned or standard sets
 - Converged Solutions
 - kW load
 - Compute/network/storage
- Modular spaces need to provide:
 - Support future technologies
 - Support cooling and power requirements
 - Increase energy efficiency
 - Create potential "Cookie Cutter" design, but matched to the building and customer needs

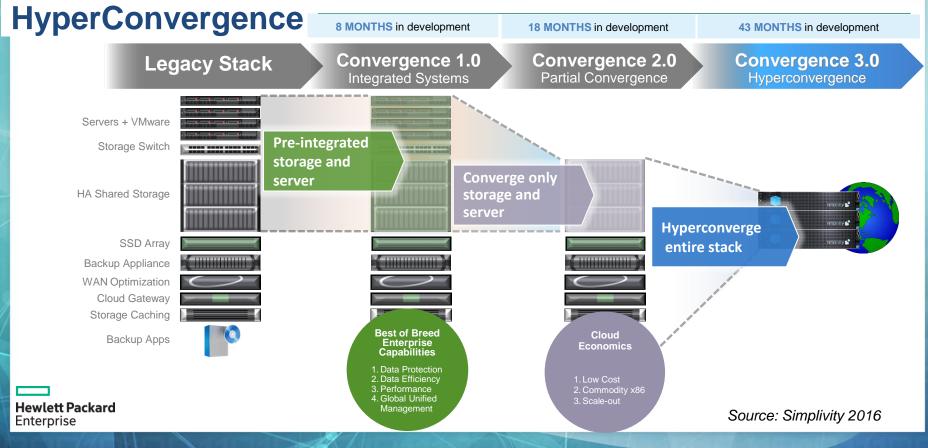
Underwritten by

Hewlett Packard

Powered by Intel

Modular Design Challenges

- Will it be flexible?
 - Designs are usually completed 3-4 years prior to product install
- Can it accept future technologies?
 - Equipment is changing from power requirements to cooling requirements – Ex. New Switches and Air path
 - Easily upgradeable
- Network Connectivity
 - Can it support current and future network demand and connections
- Space
 - Newer devices requiring greater space footprint, power and cooling.

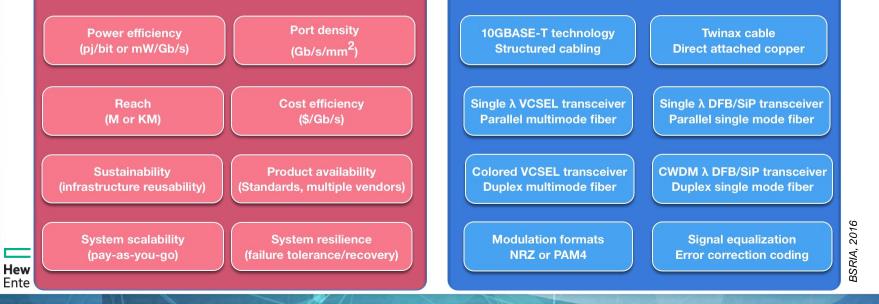


Underwritten by

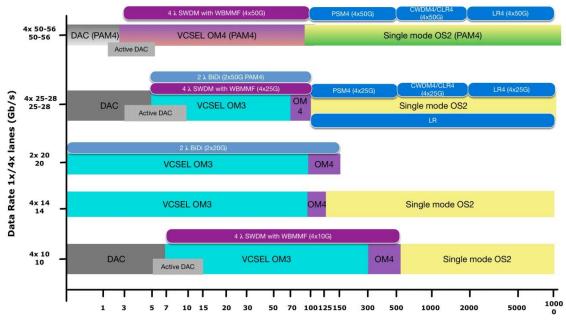
Hewlett Packard Enterprise

Powered by Intel®

Hewlett Packard


Underwritten by

Application/Cloud High Speed Connectivity Challenges


Improving the Outing of Government IT

Underwritten by

Hewlett Packard Enterprise

System Interconnects Speed & Media

Link Length (Meter)

			Ethernet		
Protocol	#Lane	Signaling Rate (GBaud)	Aggregate Data Rate (Gbit/s)	Modulation Format	Transmission Media
10GE	1	10.3125	10.3125	NRZ	DAC, MMF, SM
25GE	1	25.78125	25.78125	NRZ	DAC, MMF, SM
40GE	4	10.3125	41.25	NRZ	DAC, MMF, SM
50GE	2	25.78125	51.5326	NRZ	DAC, MMF, SM
50GE	1	26.5625	53.125	PAM4	DAC, MMF, SM
100GE	4	25.78125	103.125	NRZ	DAC, MMF, SM
100GE	2	26.5625	106.25	PAM4 (Gen2)	DAC, MMF, SM
200GE*	4	26.5625	212.5	PAM4	DAC, MMF, SM
400GE*	16	25.78125	412.5	NRZ (SR16)	MMF
400GE*	4	53.125	425.0	PAM4 (DR4)	SMF (PSM)
400GE*	8	26.5625	425.0	PAM4 (FR8, LR8)	SMF (WDM)
			Fibre Channel		
Protocol	#Lane	Signaling Rate	Aggregate Data Rate	Modulation Tra	nsmission Medi

Protocol	#Lane	Signaling Rate (GBaud)	Aggregate Data Rate (Gbit/s)	Modulation Format	Transmission Media
8GFC	1	8.5	8.5	NRZ	DAC, MMF, SMF
16GFC	1	14.025	14.025	NRZ	DAC, MMF, SMF
32GFC	1	28.05	28.05	NRZ	DAC, MMF, SMF
64GFC*	1	28.05	56.10	PAM4	DAC, MMF, SMF
128GFC	4	28.05	112.2	NRZ	DAC, MMF, SMF
256GFC*	4	28.05	224.4	PAM4	DAC, MMF, SMF

			InfiniBand		
Protocol	#Lane	Signaling Rate (GBaud)	Aggregate Data Rate (Gbit/s)	Modulation Format	Transmission Media
QDR	1	10	10	NRZ	DAC, MMF, SMF
4xQDR	4	10	40	NRZ	DAC, MMF, SMF
FDR	1	14.0625	14.0625	NRZ	DAC, MMF, SMF
4xFDR	4	14.0625	56.25	NRZ	DAC, MMF, SMF
EDR	1	25.78125	25.78125	NRZ	DAC, MMF, SMF
4xEDR	4	25.78125	103.125	NRZ	DAC, MMF, SMF
HDR*	1	53.125	53.125	PAM4	DAC, MMF, SMF
4xHDR*	4	53.125	212.5	PAM4	DAC, MMF, SMF

BSRIA, 2015

D

October 27, 2016 NEWSEUM, WASHINGTON D.C.

Underwritten by

Hewlett Packard Enterprise

Powered by Intel® (intel

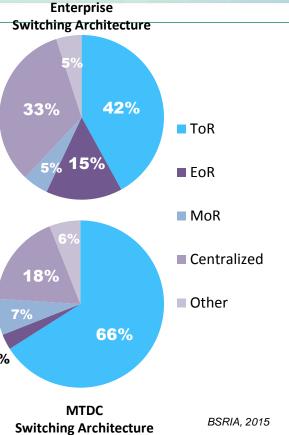
Network Speed Technology Lifecycle

Speed		Operating bandwidth Distance limitation 200G Power consumption	400G 1T
Twisted- Pair			Distance limitation
DAC (Twin-ax)		Parallel optics SWDM	Distance limitation Infrastructure cost
MMF	Active equipment cost		Silicon Photonics
SMF			
Hewlett Packard Enterprise		Source	ce: BSRIA, Belden, Anixter

Reach

3 m

5 m


October 27, 2016 NEWSEUM, WASHINGTON D.C.

Underwritten by Hewlett Packard Enterprise

33% **Twisted** AOC DAC MMF SMF Pair \checkmark \checkmark \checkmark \checkmark \checkmark 18% \checkmark \checkmark \checkmark 7% \checkmark \checkmark \checkmark 3%

Switch to Server Connections

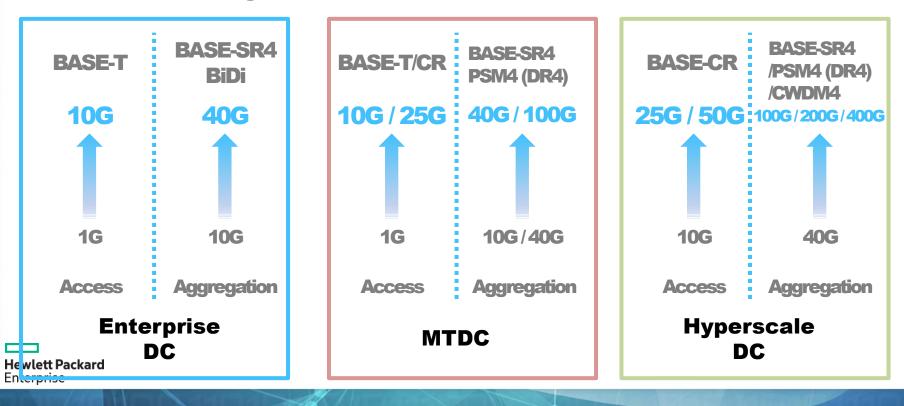
-	MoR / EoR	30 m					
	Centralized	100 m					
	Hewlett Packard Enterprise						

Topology

Adjacent

ToR

Rack


Improving the Outcor of Government IT Underwritten by

BSRIA. Belden. 2015 and 2016

Hewlett Packard Enterprise

Data Center Migration Paths

Improving the Outcor of Government IT Underwritten by

Hewlett Packard Enterprise

Closing and Questions. Thank you

